Ecuaciones sencillas de primer grado

  • por
Ecuaciones sencillas de primer grado

Ejemplos de ecuaciones de primer grado

Gráfica de un polinomio de grado 4, con 3 puntos críticos y cuatro raíces reales (cruces del eje x) (y por tanto ninguna raíz compleja). Si uno de los mínimos locales estuviera por encima del eje x, o si el máximo local estuviera por debajo, o si no hubiera ningún máximo local y un mínimo por debajo del eje x, sólo habría dos raíces reales (y dos complejas). Si los tres extremos locales estuvieran por encima del eje x, o si no hubiera ningún máximo local y un mínimo por encima del eje x, no habría ninguna raíz real (y cuatro raíces complejas). El mismo razonamiento se aplica a la inversa para el polinomio con un coeficiente cuaternario negativo.

A veces se utiliza el término bicuadrático en lugar de cuático, pero, normalmente, la función bicuadrática se refiere a una función cuadrática de un cuadrado (o, equivalentemente, a la función definida por un polinomio cuático sin términos de grado impar), que tiene la forma

Como una función cuártica está definida por un polinomio de grado par, tiene el mismo límite infinito cuando el argumento va al infinito positivo o negativo. Si a es positivo, entonces la función aumenta hasta el infinito positivo en ambos extremos; y por tanto la función tiene un mínimo global. Del mismo modo, si a es negativo, disminuye hasta el infinito negativo y tiene un máximo global. En ambos casos puede tener o no otro máximo local y otro mínimo local.

Ecuación cuadrática

Las ecuaciones son de primer grado cuando pueden escribirse en la forma ax + b = c, donde x es una variable y a, b y c son constantes conocidas y a ¡a!=0. Discutimos las técnicas para resolver ecuaciones de primer grado en la sección 3.4 y de nuevo en la sección 3.5 al tratar las fórmulas. Además, encontrar las soluciones a las proporciones discutidas en las secciones 6.6 y 6.7 implica resolver ecuaciones de primer grado.

Este tema es uno de los más básicos e importantes para cualquier estudiante principiante de álgebra y se presenta de nuevo aquí para reforzarlo positivamente y como preparación para resolver una variedad de aplicaciones en las secciones 7.3, 7.4 y 7.5.

Hay exactamente una solución para una ecuación de primer grado en una variable. Esta afirmación puede demostrarse por el método de la contradicción. La prueba no se da aquí. Las ecuaciones que tienen más de una solución se discutirán en los capítulos 8, 9 y 10.

Esta última técnica tiene la ventaja de dejar sólo los coeficientes enteros y las constantes. Si hay más de una fracción, entonces cada término debe ser multiplicado por el LCM de los denominadores de las fracciones.

Ejercicios de ecuaciones de primer grado

Este artículo trata sobre las ecuaciones algebraicas de grado dos y sus soluciones. Para la fórmula utilizada para encontrar las soluciones de dichas ecuaciones, véase Fórmula cuadrática. Para funciones definidas por polinomios de grado dos, véase Función cuadrática.

término. Los números a, b y c son los coeficientes de la ecuación y pueden distinguirse llamándolos, respectivamente, coeficiente cuadrático, coeficiente lineal y término constante o libre[1].

Los valores de x que satisfacen la ecuación se denominan soluciones de la misma, y raíces o ceros de la expresión en su lado izquierdo. Una ecuación cuadrática tiene como máximo dos soluciones. Si sólo hay una solución, se dice que es una raíz doble. Si todos los coeficientes son números reales, hay dos soluciones reales, o una única raíz doble real, o dos soluciones complejas. Una ecuación cuadrática siempre tiene dos raíces, si se incluyen las raíces complejas y una raíz doble se cuenta por dos. Una ecuación cuadrática puede ser factorizada en una ecuación equivalente

Ecuación lineal

Hay muchos métodos para resolver ecuaciones. La elección del método adecuado depende generalmente del grado de la ecuación, es decir, del exponente de la incógnita. Las ecuaciones más sencillas son las de primer grado. Cuanto más alto sea el grado de la ecuación, más compleja será.

El objetivo es encontrar el peso de esas cajas. Empecemos por plantear el problema que tendrá una ecuación de primer grado y la incógnita `x` representa el peso de una de las cajas (la solución es posible sólo si todas las cajas tienen el mismo peso). En el plato izquierdo de la balanza tenemos `2x + 500 + 100` y en el plato derecho tenemos `x + 250 + 500`. Teniendo en cuenta que se trata de una ecuación de primer grado, el método más habitual es tratar de aislar la incógnita dentro del primer miembro y luego encontraremos su valor. Hay que destacar que en el caso de la balanza podemos añadir o quitar a los platos el mismo peso y mantendrán el equilibrio. Según la analogía, en una ecuación podemos sumar o restar ambos miembros por una constante y siempre obtendremos una ecuación equivalente. Aquí está la solución (abreviada):